000192818 001__ 192818
000192818 003__ CZ-ZdVUG
000192818 005__ 20171030135952.0
000192818 020__ $$a5-02-003648-X
000192818 044__ $$aru
000192818 041__ $$arus
000192818 040__ $$aABC039$$bcze
000192818 1001_ $$aDanilov, Viktor Lazarevič
000192818 242__ $$aStabilization methods for applied inverse potential problems in gravity prospecting and in the theory of the figure of the earth
000192818 246_3 $$aМетоды установления в прикладных овратных задачах потенциала гравитационной разведки и теории фигуры Земли / Данилов, В. Л.
000192818 24510 $$aMetody ustanovlenija v prikladnych obratnych zadačach potenciala gravitacionnoj razvedki i teorii figury Zemli
000192818 264_1 $$aMoskva$$bNauka$$c1966
000192818 300__ $$a247 stran
000192818 504__ $$aObsahuje bibliografické údaje
000192818 520__ $$aTheory and applications of methods developed by the author are given in the monograph. These methods for solving stationary inverse potential problems are based on imbedding of the problems into space of more dimensions, what allowed to reduce them to non-stationary (Cauchy) problems. Two types of inverse problems have been studied: type A, where the data besides the unknown sunface and the surface or the density of a body are to be determined, besides the unknown  sunface has no common points with data carrying boundary (inverse) problems of gravitational prospecting, and type B, where unknown surface coincides with the informational carrying one (classical problems of the theory of the earth figure). The proposed approach permits to solve the above-mentioned problems in non-linear formulation. For geophysicists, specialist in mathematical physics, and calculational mathematics, for postgraduates and students of senior courses in relating science.
000192818 655_4 $$amonografie
000192818 653_0 $$ageofyzika$$aCauchy problems$$astationary inverse potential problems
000192818 910__ $$aABC039$$b51220
000192818 943__ $$aPolice:řada
000192818 980__ $$aknihy
000192818 985__ $$ageofyzika
000192818 985__ $$amatematika
000192818 990__ $$arevize2015$$b160106$$cklo
000192818 999__ $$a#####nam#a22#####uc#4500