000193450 001__ 193450
000193450 005__ 20210610122749.0
000193450 044__ $$agw
000193450 041__ $$aeng
000193450 1001_ $$aVáclavovic, Pavel
000193450 24510 $$aUsing external tropospheric corrections to improve GNSS positioning of hot-air balloon
000193450 300__ $$a11 stran
000193450 5203_ $$9eng$$aHigh accurate global navigation satellite systems (GNSS) require to correct a signal delay caused by the troposphere. The delay can be estimated along with other unknowns or introduced from external models. We assess the impact of the recently developed augmentation tropospheric model on real-time kinematic precise point positioning (PPP). The model is based on numerical weather forecast and thus reflects the actual state of weather conditions. Using the G-Nut/Geb software, we processed GNSS and meteorological data collected during the experiment using a hot-air balloon flying up to an altitude of 2000 m. We studied the impacts of random walk noise setting of zenith total delay (ZTD) on estimated parameters and the mutual correlations, the use of external tropospheric corrections, the use of data from a single or dual GNSS constellation and the use of Kalman filter and backward smoothing processing methods. We observed a significant negative correlation of the estimated rover height and ZTD which depends on constraining ZTD estimates. Such correlation caused a degraded performance of both parameters when estimated simultaneously, in particular for a single GNSS constellation. The impact of ZTD constraining reached up to 50-cm differences in the rover height. Introducing external tropospheric corrections improved the PPP solution regarding: (1) shortened convergence, (2) better overall robustness, particularly, in case of degraded satellite geometry, (3) less adjusted parameters with lower correlations. The numerical weather model-driven PPP resulted in 9-12- and 5-6-cm uncertainties in the rover altitude using the Kalman filter and the backward smoothing, respectively. Compared to standard PPP, it indicates better performance by a factor of 1-2 depending on the availability of GNSS constellations, the troposphere constraining and the processing strategy.
000193450 655_4 $$ačlánek v časopise
000193450 653_0 $$aGNSS
000193450 653_0 $$aTropospheric corrections
000193450 653_0 $$aZenith total delay
000193450 653_0 $$aNumerical weather forecast
000193450 653_0 $$aPrecise point positioning
000193450 653_0 $$aKinematic positioning
000193450 7001_ $$aDouša, Jan
000193450 7001_ $$aEliaš, Michal
000193450 7001_ $$aKostelecký, Jakub
000193450 7730_ $$92017$$g21(4), str.1479-1489$$tGPS SOLUTIONS$$x1080-5370
000193450 85642 $$uhttps://www.rvvi.cz/riv?s=jednoduche-vyhledavani&ss=detail&h=RIV%2F00025615%3A_____%2F17%3AN0000007%21RIV18-MSM-00025615
000193450 856__ $$uurn:doi:10.1007/s10291-017-0628-3
000193450 85640 $$uhttps://link.springer.com/article/10.1007/s10291-017-0628-3
000193450 943__ $$aRIV:J
000193450 980__ $$aclanky_vugtk
000193450 985__ $$aanotace
000193450 985__ $$ariv
000193450 985__ $$avaclavovic
000193450 985__ $$adousa
000193450 985__ $$aelias
000193450 985__ $$akosteleckyjakub
000193450 985__ $$autvar24