Bibliografie VÚGTK
Fundamental solution of Laplace?s equation in oblate spheroidal coordinates and Galerkin?s matrix for Neumann?s problem in Earth?s gravity field studies
Holota, Petr ; Nesvadba, Otakar



Typ publikace: audiovizuální tvorba

Anotace:
The motivation comes from the role of boundary value problems in Earth?s gravity field studies. The focus is on Neumann?s problem in the exterior of an oblate ellipsoid of revolution. The approach follows the concept of variational methods and the notionof the weak solution. The solution of the problem is approximated by linear combinations of basis functions with scalar coefficients, i.e. by Galerkin approximations. The aim is to discuss the construction of Galerkin?s matrix for elementary potentialsused in quality of a function basis. The computation of the entries of Galerkin?s matrix is expected to be simple for the elementary functions like these. Nevertheless, the opposite is true. Ellipsoidal harmonics are applied as a natural tool. The problem, however, is the summation of the series that represent the entries. It is difficult to reduce the number of summation indices since in the ellipsoidal case there is no analogue to the addition theorem known for spherical harmonics.

Citace: HOLOTA, Petr a Otakar NESVADBA. Fundamental solution of Laplace?s equation in oblate spheroidal coordinates and Galerkin?s matrix for Neumann?s problem in Earth?s gravity field studies [online]. Vienna: European Geosciences Union, 2015 [cit. 2019-01-03].

Záznam se nachází v těchto sbírkách:
Výsledky VÚGTK > Vědečtí pracovníci VÚGTK > Ing. Otakar Nesvadba, Ph.D.
Výsledky VÚGTK > Vědečtí pracovníci VÚGTK > RNDr. Ing. Petr Holota, DrSc.
Výsledky VÚGTK > Podle útvarů / oddělení > 24: Geodézie a geodynamika
Dokumentační centrum VÚGTK > Články VÚGTK
Výsledky VÚGTK > Výsledky RIV

 Záznam vytvořen 2018-11-15, poslední editace 2019-02-01



Hodnotit tento dokument:

Rate this document:
1
2
3
 
(Ještě nerecenzováno)