Bibliografie VÚGTK
Summation of series and an approximation of Legendre?s functions in constructing integral kernels for the exterior of an ellipsoid: Application to boundary value problems in physical geodesy
Holota, Petr

Zdroj: Leibniz Online : 19 (2015), 12 s. ISSN: 1863-3285

Typ publikace: článek v odborném periodiku
Rozsah: 12 stran

Anotace:
The paper primarily concerns physical geodesy applications and thus problems associated with Laplace?s and Poisson?s partial differential equation that offer a natural basis for gravity field studies. In the introduction a brief review is given on Green?s function constructed for Stokes? and Neumann?s problem formulated for the exterior of a sphere. The second of the problems is considered also within the weak solution concept. Galerkin elements are expressed for the special case when the function basisis generated by the respective reproducing kernel or represented by reciprocal distances (elementary potentials). The solution domain is then generalized and the paper focuses on the construction of the reproducing kernel of Hilbert?s space of functionsharmonic in the exterior of an oblate ellipsoid of revolution. In the first stage the kernel is represented by a series of ellipsoidal harmonics.

Citace: HOLOTA, Petr. Summation of series and an approximation of Legendre?s functions in constructing integral kernels for the exterior of an ellipsoid: Application to boundary value problems in physical geodesy. Leibniz Online [online]. Spolková republika Německo, 2015, 2015(19), 12 s. [cit. 2019-01-18]. ISSN 1863-3285. Dostupné z: http://leibnizsozietaet.de/wp-content/uploads/2015/06/holota.pdf

Záznam se nachází v těchto sbírkách:
Výsledky VÚGTK > Vědečtí pracovníci VÚGTK > RNDr. Ing. Petr Holota, DrSc.
Výsledky VÚGTK > Podle útvarů / oddělení > 24: Geodézie a geodynamika
Dokumentační centrum VÚGTK > Články VÚGTK
Výsledky VÚGTK > Výsledky RIV

 Záznam vytvořen 2018-11-20, poslední editace 2019-02-06



Hodnotit tento dokument:

Rate this document:
1
2
3
 
(Ještě nerecenzováno)