Bibliografie VÚGTK
Differential geometry and curvatures of equipotential surfaces in the realization of the World Height System
Holota, Petr ; Nesvadba, Otakar ; EGU General Assembly 2020



Publication type: anotace
Extent1 strana

Link: https://doi.org/10.5194/egusphere-egu2020-13418
Annotation:
The notion of an equipotential surface of the Earth’s gravity potential is of key importance for vertical datum definition. The aim of this contribution is to focus on differential geometry properties of equipotential surfaces and their relation to parameters of Earth’s gravity field models. The discussion mainly rests on the use of Weingarten’s theorem that has an important role in the theory of surfaces and in parallel an essential tie to Brun’s equation (for gravity gradient) well known in physical geodesy. Also Christoffel’s theorem and its use will be mentioned. These considerations are of constructive nature and their content will be demonstrated for high degree and order gravity field models. The results will be interpreted globally and also in merging segments expressing regional and local features of the gravity field of the Earth. They may contribute to the knowledge important for the realization of the World Height System.

Citation: Holota, P. and Nesvadba, O.: Differential geometry and curvatures of equipotential surfaces in the realization of the World Height System, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13418, https://doi.org/10.5194/egusphere-egu2020-13418

The record appears in these collections:
Focus on VÚGTK > VÚGTK Departments > Geodesy and Geodynamics
Focus on VÚGTK > Researchers > Petr Holota
Documents of VÚGTK > Articles VÚGTK
Focus on VÚGTK > RIV

 Record created 2021-07-27, last modified 2021-08-23


External link:
Download fulltext
Fulltext
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)