Bibliografie VÚGTK
Divergence of Gradient and the Solution Domain in Gravity Field Studies
Holota, Petr

Typ publikace: audiovizuální tvorba
Rozsah: 27 stran

This paper focuses on the solution of the linear gravimetric boundary value problem by means of the method of successive approximations. A transformation of coordinates is used to express the relation between the description of the boundary of the solution domain and the structure of Laplace’s operator. In the introductory part of the paper the relation is interpreted in general terms by means of the apparatus of tensor calculus. The solution domain is carried onto the exterior of an oblate ellipsoid of revolution and the original oblique derivative boundary condition is given the form of Neumann’s boundary condition. Laplace’s operator expressed in terms of new coordinates involves topography-dependent coefficients. Effects caused by the topography of the physical surface of the Earth are treated as perturbations. Their structure is analyzed and modified by using integration by parts. As a result of the transformation an ellipsoidal mathematical apparatus may be applied at each iteration step. In particular Green’s function of the second kind, i.e. Neumann’s function, constructed for the exterior of an oblate ellipsoid of revolution, may be used in the integral representation of the successive approximations.

Záznam se nachází v těchto sbírkách:
Výsledky VÚGTK > Vědečtí pracovníci VÚGTK > RNDr. Ing. Petr Holota, DrSc.
Výsledky VÚGTK > Podle útvarů / oddělení > 24: Geodézie a geodynamika
Dokumentační centrum VÚGTK > Články VÚGTK
Výsledky VÚGTK > Výsledky RIV

 Záznam vytvořen 2020-07-21, poslední editace 2020-07-21

Externí odkaz:
Stáhnout fulltext
Hodnotit tento dokument:

Rate this document:
(Ještě nerecenzováno)